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J. Phys.: Condens. Matter 2 (1990) 9445-9450. Printed in the UK 

LETTER T O  THE EDITOR 

The phase diagram of hard spheres in a periodic external 
potential 

J L Barratt and H Xu$ 
t Laboratoire de Physique, Ecole Normale Sup6rieure de Lyon, 46 AllCe d'Italie, 
69364 Lyon CCdex 07, France 

University Chemical Laboratory, Lensfield Road, Cambridge CB2 lEW, UK 

Received 10 September 1990 

Abstract. The density-functional theory has been applied to calculating the phase 
diagrams of a hart!-sphere system in a one-dimensional periodic external potential. 
The results show that when the wavelength of the external potential is comparable to 
the hard-sphere solid lattice spacing, the freezing transition occurs a t  sensitively lower 
densities. The possibility of a smectic-B-like phase has been investigated in the case 
of large wavelengths. Two versions of the density-functional theory, the modified 
weighted-density approximation and generalized effective liquid approximation are 
shown to give similar phase diagrams. 

The freezing transition induced by a periodic external potential has already been 
observed in experiments [l], where strongly interacting co1loida.l particles confined 
between two plates are observed to form a two-dimensional triangular lattice when 
crossed laser beams produce a one-dimensional modulation of the spatial density in 
the fluid. In the present work we investigate the phase transitions of a HS fluid 
when a one-dimensional periodic external potential is applied to it.  Compared to  
an earlier similar study [2] where a three-dimensional modulation has been applied 
to  the HS fluid, the present form of external potential is closer to  a simple and real 
experimental situation. As a standard tool for studying the freezing transition, the 
density-functional theory (DFT) [3] will be used in our study. We have carried out 
calculations separately with the modified weighted-density approximation (MWDA) [4] 
and generalized effective liquid approximation (GELA) [3]. Since both theories are very 
successful in predicting the freezing of unconstrained HS systems, we intend t o  compare 
their predictions when an external potential is applied. 

We first recall the formalism of DFT for classical non-uniform systems. The free 
energy is a functional of the one-particle density P ( T )  

PFid = / dT P(T)(1n(P(T)A3) - I) 
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with A the thermal wavelength. Kxt(r) is the external potential which in the present 
study is assumed to  be of the form 

Vext(r) K x t ( E )  = -p-’uo cos(kof) (3) 

where U, measures the amplitude of the potential and (0, 0 ,  k o )  is the wavevector. Fex 
is the excess part of the free energy due to  interactions between particles. Its second 
derivative with respect to  the density p( r )  is related to  the direct correlation function 
C(T1T’;  [PI) 

The right-hand side of (4) is only reasonably well known for some simple uniform 
liquids. For the uniform HS fluid, the Percus-Yevick solution cPy(lr - T ’ I , ~ )  [5] is 
widely used. We shall also be using it in the present work. For a ,non-uniform system, 
one has to  relate Fe, [p] to  that  of an uniform system. One assumes in both MWDA 
and GELA that  

where dex [p] = Fe, [ p ] / N  is the excess free energy per particle. The condition ex- 
pressed by (5) can be called a ‘thermodynamic mapping’ [3]. The density of the 
uniform effective liquid is related to  the real density p ( r )  via a weighting function 
W ( T j T ‘ 1  [PI) 

6 = ’/ d r  / dr’ p ( r ) p ( r / ) w ( r ,  r’ ,  [ p ] )  . (6) PV 

In MWDA, if it is assumed that w ( T , T ’ ,  [ p ] )  = w(lr - r’1,P) and one requires 
J d r  W ( I T  - T I [ , , ? )  = 1, then the weighting function w is determined by the condi- 
tion 

where FEWDA [p] = J d r  p( r )4ex(b  [ p ] )  according to ( 5 ) .  From (7a )  one obtains for 
( r ,  P o )  

WMWDA 

( r ,  P o )  = - - (C ( ‘ ’PO)  + P o P d ~ x ( P , ) / v ) / ( 2 P ~ ~ x ( P o ) )  . (7b) WMWDA 

In GELA, the starting point is the integral form of (4) 

The effective liquid with @ satisfies a ‘structural mapping’ besides the ‘thermodynamic 
mapping’ (equation (5)). One assumes 

C(T1 T I ;  [ P A ] )  = c ( l r  - TII ;  F ( [ P A l ) )  (9) 
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in (8). The functional b [p] is obtained by self-consistently solving the equation 

assuming the functional form 

w 

Notice that (10) is readily derived from the expression for Fe,[Ap] by using equations 
(8) and (4). For practical reasons it is necessary to truncate (11). As one only needs 
to know 8 [p] E a, in order to  calculate Fe, [p] according to (5) ,  the convergence of a, 
is a good criterion for this truncation. 

The weighting function w G E L A ( I ~  - T’j; [p ] )  is easily derived from (5) and (9) 

We notice that both MWDA and GELA satisfy (4) at the limit P ( T )  + p1 while in 
GELA (5) is realized by a ‘structural mapping’ (equation (9)). From a practical point of 
view, MWDA is simpler to implement. The connection between the two approximations 
is discussed in [3]. 

The determination of the phase diagram proceeds in the usual manner: one first 
decides, on physical grounds, which phases should be investigated. Each phase is 
described by a suitably parametrized density P ( T ) .  The free energy of each phase 
is then determined at fixed average density, temperature and external potential by 
minimizing the functional F[p] with respect to  the parameters of p ( r ) .  Finally, at a 
given wavelength of Vext(z), the phase diagram in the plane ( p ,  U,) is deduced from a 
double tangent construction on the free energy versus density curves for the various 
phases. We shall now describe the different phases which have been considered in this 
work, and the corresponding parametrizations. 

Under the external potential, the isotropic fluid becomes modulated along the z 
direction. Its density is analogous to that of a smectic liquid crystal phase. We denote 
it as the MA phase. The modulated density can be expressed by assuming the simple 
form 

PI(7-1 = Ap, exp (-sa C O S ( ~ 0 ~ ) )  (13a) 

where the normalization constant A is such that ( l /V)Sdrp , ( r )  = p I ,  i.e., 

1 A 0  -1 
dz exp (-s cos(koz)) 

where A, E 27r/k,  is the wavelength of Vext(z) and l o ( s )  is the modified Bessel function 
of zeroth order. The parameter for the minimization of F( ’ ) [p , ]  at constant average p, 
is the coefficient sa. 

Notice that (13a) allows one to recover the linear response when U, is small, in 
which case s,(linear response) = U,S(k,) where S ( k )  is the static structure factor of 
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Figure 1. The parameter sL(Uo) (full curve) in (13a) resulting from the free-energy 
minimization for the case koa = 6.98 and PI = 0.80 for which S(ko)  = 2.03. In the 
same plot we have also drawn the curves s,(linear response)(&) (chain curve) and 
sa([2])(Uo) = U0 (dotted curve). 

the uniform liquid. In figure 1, we compare sa(Uo) with s,(linear response)(U,) and 
the simple barometric approximation used by the authors of [2] ,  i.e. sa([2])(U,) = U,. 
The comparison is carried out for the case k, = 6.98/a where U is the diameter of the 
hard spheres. We can see that for this wavelength sa(Uo) and s,([2])(Uo) = U,, are 
reasonably close t o  each other whereas the linear response is only valid for very small 

The homogeneous HS fluid undergoes a freezing transition towards a close-packed 
(FCC or HCP) crystalline structure when the pressure or density is increased [6].  With 
Vext(z) present, the solid phase is also expected to  be a non-ideal hexagonal close- 
packed crystal with the distance between the compact lattice planes c = 2X, if the 
wavelength A, has a value close to  the HS lattice spacing. We have assumed the density 
of the solid phase P, (T )  to  be a sum of Gaussians centred a t  the lattice sites 

U,. 

2 
312 

= c( 2) exp ( - c y S ( ~  - r i )  ) . 
I r J  

The parameter for the free energy minimization is now the width parameter cy, of the 
G aussians. 

When the wavelength A, is sensibly larger than normal HS lattice spacing, e.g. 
A, 2d where d is the nearest distance between lattice sites, the external potential 
Kxt(.z) is expected to force the modulated fluid to  form a new phase with particles 
being more-or-less locked in the planes of minimum Vext(z) and forming a close-packed 
triangular lattice there. The planes are not correlated. In other words, they can slide 
freely with respect t o  each other. The density of this phase is analogous to  that of 
a smectic-B liquid-crystal phase. This phase will be denoted MB, and its density 
represented as 
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and 

where {RE}  are the vectors of a two-dimensional triangular lattice and A is a function 
of sB defined as in (136). The free energy must now be minimized with respect to  the 
parameters sB and aB. In calculating the free energy for this phase, a difficulty arises 
from the fact that  the two-dimensional crystals in the different planes are supposed to  
be uncorrelated. We incorporate this constraint in the calculation of the free energy 
by averaging over all of the possible orientations and origins for the triangular lattices 
when calculating integrals such as (6). 

J 
1 1 -  
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Figure 2. The phase diagram for wavevector koo  = 6.98. The liquid and solid 
coexistence densities p l a 3  (lower curves) and p l a 3  (upper curves) are drawn versus 
the strength of the external potential U,. The full curves are results from M W D A  and 
the broken curves are those from G E L A .  

We have computed the phase diagram for the three different phases described above 
for two wavelengths of the external potential. In the first case, koa qo = 6.98. This 
value of qo corresponds to  the maximum of S(k) of homogeneous HS fluid a t  freezing 
density (pa3 = 0.943). This is a case where A, M d .  Hence the freezing transition MA- 
non-ideal HCP will be favoured by Vext(z) and the phase MB is unlikely the appear. 
The corresponding phase diagram { p l ( U , ) ,  p , (U, ) }  is shown in figure 2 where we notice 
that because of the presence of Vext(z), freezing does indeed occur a t  a lower density pI. 
The solid density p s  is also lowered. But the gap between the liquid and solid densities 
remains finite. Figure 2 also shows that the MWDA and the GELA give very similar 
phase diagrams. The  other situation we investigated is the case qo = 3 or Ao/u = 2.1. 
The planes of minimum Vext(z) are much further apart than spacing of close-packed 
planes in a HS crystal. We would then expect t o  observe the 'MB' phase when U, 
is strong enough. Nevertheless, we have found that neit(her MWDA nor GELA could 
predict a stable MB phase for U, up to  10. The reason might be that the curvature of 
our Vext(z) is not strong enough t o  confine particles into planes. Another result worth 
noticing in this case is that  an effective uniform fluid for the phase MA can no longer 
be found when U, is too large (U, > 10 for MWDA and a little larger for GELA). It 
is possible that (13a) is not a good approximation for such large values of U,. The 
result may also indicate the existence of other more complicated phases promoted by 
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the external potential. At this stage some experimental evidence is needed t o  give a 
hint a t  their symmetry. In the case of qo = 3, the freezing transition is not favoured 
by Vext(z). At coexistence, pl(Uo # 0) is slightly smaller than the unconstrained value 
p!(Vo = 0) and p,(Vo # 0) is slightly larger than p,(Vo = 0). 

We have shown with this simple study that a periodic external potential with 
suitable wavelength favours the freezing transition. This result agrees with previous 
studies [1,2]. The  situation we presented can be realized in experiments. We have 
also characterized one of the more complex phases that may form because of the 
external potential. The smectic-B-like phase we investigated does not seem to be 
stable within our approximations for the form of potential we have used. We still 
expect these complex phases to  occur in real systems even with a simple external 
potential. Further studies, both theoretical and experimental, are needed to  describe 
them better. Finally, we have shown that MWDA and GELA give similar phase diagrams 
for hard spheres in an external potential. 

We are grateful to  Professor J-P Hansen for drawing our attention to  the problem and 
to  Dr M Baus for valuable discussions. One of us (HX) is supported by the Philippe 
Wiener-Maurice Anspach Foundation. 
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